omdenalore.time_series package
Submodules
omdenalore.time_series.auto_regression module
- class omdenalore.time_series.auto_regression.AutoRegressive
Bases:
object
Generic class to generate time-series auto regressive datasets and to plot auto-correlation function
- gen_ar1_dataset(n: int = 600) numpy.ndarray
Generate AR(1) dataset
- Parameters
n (int) – number of samples
- Returns
ar1 dataset
- gen_ar2_dataset(n: int = 600) numpy.ndarray
Generate AR(2) dataset
- Parameters
n (int, optional) – number of samples
- Returns
ar3 dataset
- gen_ar3_dataset(n: int = 600) numpy.ndarray
Generate AR(3) dataset
- Parameters
n (int, optional) – number of samples
- Returns
ar3 dataset
- plotds(input_signal: pandas.Series, nlag: int = 30, fig_size: Tuple[int, int] = (12, 10)) None
Function to plot signal, ACF and PACF
- Parameters
xt (series) – input signal
nlag – An int or array of lag values, used on horizontal axis.
Uses np.arange(lags) when lags is an int. If not provided, lags=np.arange(len(corr)) is used. :type nlag: int, array (optional) :param fig_size: figure size :type fig_size: tuple :returns: None
omdenalore.time_series.metrics module
- class omdenalore.time_series.metrics.ComputeMetrics(actual: numpy.ndarray, predicted: numpy.ndarray)
Bases:
object
Generic class to evaluate & compute time series metrics between predicted values and true values
- bias()
method to compute mean forecast error(or Forecast Bias)
- Returns
result mean forecast error
- gmae()
method to compute geometric mean absolute error
- Returns
result geometric mean absolute error
- gmrae(benchmark: Optional[numpy.ndarray] = None)
method to compute geometric mean relative absolute error
- Parameters
benchmark (np.ndarray) – array for benchmark values
- Returns
result geometric mean relative absolute error
- inrse()
method to compute integral normalized root squared error
- Returns
result integral normalized root squared error
- maape()
method to compute mean arctangent absolute percentage error Note: result is NOT multiplied by 100
- Returns
result mean arctangent absolute percentage error
- mad(actual: Optional[numpy.ndarray] = None, predicted: Optional[numpy.ndarray] = None)
method to compute mean absolute deviation (it is the same as MAE)
- Parameters
actual (np.ndarray) – array for true values
predicted (np.ndarray) – array for predicted values
- Returns
mean absolute deviation
- mae(actual: Optional[numpy.ndarray] = None, predicted: Optional[numpy.ndarray] = None)
method to compute mean absolute error
- Parameters
actual (np.ndarray) – array for true values
predicted (np.ndarray) – array for predicted values
- Returns
result mean absolute error
- map()
method to compute mean absolute percentage error Properties:
Easy to interpret
Scale independent
Biased, not symmetric
Undefined when actual[t] == 0
Note: result is NOT multiplied by 100
- Returns
result mean absolute percentage error
- mase(seasonality: int = 1)
method to compute mean absolute scaled error Baseline (benchmark) is computed with naive forecasting (shifted by @seasonality)
- Parameters
seasonality (int) – sample period
- Returns
result mean absolute scaled error
- mbrae(benchmark: Optional[numpy.ndarray] = None)
method to compute mean bounded relative absolute error
- Parameters
benchmark (np.ndarray) – array for benchmark values
- Returns
result mean bounded relative absolute error
- mda()
method to compute mean directional accuracy
- Returns
result mean directional accuracy
- mdae()
method to compute median absolute error
- Returns
result gmedian absolute error
- mdape()
method to compute median absolute percentage error Note: result is NOT multiplied by 100
- Returns
result median absolute percentage error
- mdrae(benchmark: Optional[numpy.ndarray] = None)
method to compute median relative absolute error
- Parameters
benchmark (np.ndarray) – array for benchmark values
- Returns
result median relative absolute error
- me()
method to compute mean error
- Returns
result mean error
- mpe()
method to compute mean percentage error
- Returns
result mean percentage error
- mrae(benchmark: Optional[numpy.ndarray] = None)
method to compute mean relative absolute error
- Parameters
benchmark (np.ndarray) – array for benchmark values
- Returns
result mean relative absolute error
- mre(benchmark: Optional[numpy.ndarray] = None)
method to compute mean relative error
- Parameters
benchmark (np.ndarray) – array for benchmark values
- Returns
result mean relative error
- mse()
method to compute mean squared error
- Returns
result mean squared error
- nrmse()
method to compute normalized root mean squared error
- Returns
result normalized root mean squared error
- r2_score()
method to compute r2 score
- Returns
result r2 score
- rae()
method to compute relative absolute error (aka Approximation Error)
- Returns
result relative absolute error
- rmdspe()
method to compute root median squared percentage error Note: result is NOT multiplied by 100
- Returns
result root median squared percentage error
- rmse()
method to compute root mean squared error
- Returns
result root mean squared error
- rmspe()
method to compute root mean squared percentage error Note: result is NOT multiplied by 100
- Returns
result root mean squared percentage error
- rmsse(seasonality: int = 1)
method to compute root mean squared scaled error
- Parameters
seasonality (int) – sample period
- Returns
result root mean squared scaled error
- rrse()
method to compute root relative squared error
- Returns
result root relative squared error
- smape()
mehod to compute symmetric mean absolute percentage error Note: result is NOT multiplied by 100
- Returns
result symmetric mean absolute percentage error
- smdape()
method to compute symmetric median absolute percentage error Note: result is NOT multiplied by 100
- Returns
result symmetric median absolute percentage error
- std_ae()
method to compute normalized absolute error
- Returns
result normalized absolute error
- std_ape()
method to compute normalized absolute percentage error
- Returns
result normalized absolute percentage error
- umbrae(benchmark: Optional[numpy.ndarray] = None)
method to compute unscaled mean bounded relative absolute error
- Parameters
benchmark (np.ndarray) – array for benchmark values
- Returns
result unscaled mean bounded relative absolute error
- class omdenalore.time_series.metrics.EvaluateMetrics(actual, predicted)
Bases:
omdenalore.time_series.metrics.ComputeMetrics
Generic class to evaluate error metrics
- evaluate(metrics=('mae', 'rmse', 'map'))
Evaluate mentioned metrics
- Parameters
metrics (tuple, default=("mae", "rmse", "map")) – type of metrics to calculate
- Returns
result dictionary
Note
select metrics from this list = { “mse”: mse, “rmse”: rmse, “nrmse”: nrmse, “me”: me, “mae”: mae, “mad”: mad, “gmae”: gmae, “mdae”: mdae, “mpe”: mpe, “map”: map, “mdape”: mdape, “smape”: smape, “smdape”: smdape, “maape”: maape, “mase”: mase, “std_ae”: std_ae, “std_ape”: std_ape, “rmspe”: rmspe, “rmdspe”: rmdspe, “rmsse”: rmsse, “inrse”: inrse, “rrse”: rrse, “mre”: mre, “rae”: rae, “mrae”: mrae, “mdrae”: mdrae, “gmrae”: gmrae, “mbrae”: mbrae, “umbrae”: umbrae, “mda”: mda, “bias”: bias, “r2”: r2_score, }
- evaluate_all()
Evaluate all metrics from the list below
“mse”: mse, “rmse”: rmse, “nrmse”: nrmse, “me”: me, “mae”: mae, “mad”: mad, “gmae”: gmae, “mpe”: mpe, “mdae”: mdae, “map”: map, “mdape”: mdape, “smape”: smape, “smdape”: smdape, “maape”: maape, “mase”: mase, “std_ae”: std_ae, “std_ape”: std_ape, “rmspe”: rmspe, “rmdspe”: rmdspe, “rmsse”: rmsse, “inrse”: inrse, “rrse”: rrse, “mre”: mre, “rae”: rae, “mrae”: mrae, “mdrae”: mdrae, “gmrae”: gmrae, “mbrae”: mbrae, “umbrae”: umbrae, “mda”: mda, “bias”: bias, “r2”: r2_score,
- Parameters
actual (np.ndarray) – array for true values
predicted (np.ndarray) – array for predict values
- Returns
result dictionary
omdenalore.time_series.plots module
- class omdenalore.time_series.plots.PlotMetrics
Bases:
object
Generic class to plot bar chart for time-series metrics (MAE, RMSE, MAP, R2)
- static bar_metrics(results_dict: dict, save_path: str, figure_size=(20, 15)) None
Plots different bar metrics
- Parameters
results_dict – Calculated metrics
save_path (str) – Path to store the figures
figure_size (tuple 1x2) – Size of the output plots
- Returns
None